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M O D E L I N G  O F  P L A N E - W A V E  P R O P A G A T I O N  

IN A N  A N I S O T R O P I C  E L A S T I C  M E D I U M  

S. A .  A n i s i m o v  a n d  I. O.  B o g u l ' s k i i  1 UDC 539.3 

We propose an algorithm that reduces the process of  numerical solution to successive calculation 
of  elementary one-dimensional problems of  the type of  a system of acoustic equations. 

I n t r o d u c t i o n .  To model the propagation of plane waves in an anisotropic inhomogeneous elastic body, 
it is necessary to solve a mixed problem for a one-dimensional system of coupled hyperbolic equations. The 
algorithm of numerical solution of these problems is well known [1: 2] and based on reduction of the system 
to the canonical form. In the case of a system of large dimension, this procedure encounters considerable 
technical difficulties. In the present paper, we propose an algorithm the essence of which is to reduce the 
process of numerical solution to successive calculation of elementary one-dimensional problems of the type of 
a system of acoustic equations. 

P l a n e  Waves  in an  A n i s o t r o p i c  Elas t ic  Layer .  We shall consider the process of wave propagation 
along the z axis in a laminated inhomogeneous elastic layer 0 ~< z ~< L which is a set of K elastic layers of 
constant thickness Hi (i = 1 , . . . ,  K) which are infinite in the z and y directions (Fig. 1). These layers are 
assumed to be transversely isotropic. For each of the layers, for a transversely isotropic medium (hexagonal 
system), in the coordinate system (z', y', z') conformed with the crystallographic axis of the material the 
Hooke's law can be written in the form [3] 

1 v2 
~x = ~-~-1 (crx -- tzlcry)- - -crz ,  

E2 

�9 'rzz -=- 2/.t26zz, ~z = - - - -  

1 t,2 
= e y  = (cr* - t, l c r . )  -E2 

v2 1 
E2 (o'z + cry) -t- ~ cr,, ry, = 21t2ey ". 

_ _  _ _  O ' z ,  

(1) 

The Young's moduli E1 and E2, the Poisson ratios vl and v2, and the shear moduli ~1 and/~2 which enter 
(1) are connected by the supplementary relation E1 = 2/~1(1 + vl). 

Thus, the transversely isotropic medium in each layer is characterized by five independent moduli 
of elasticity, density, and inclination of the crystallographic axes with respect to the axes of the Cartesian 
coordinate system (x, y, z). 

We now formulate some assumptions simplifying the problem. Let the boundary conditions at the 
surfaces perpendicular to the z axis (z = 0 and z = L) and the initial stresses and mass velocity of the 
particles be independent of the coordinates z and y for t = 0. Moreover, we assume that the (z', x') plane 
coincides with the (z, x) plane so that the inclination of the crystallographic axis is uniquely determined by 
the angle of slope ~ of the z' axis to the z axis, and the velocity vector always lies in the (z, x) plane. Thus, 
we consider the one-dimensional problem, i.e., the desired functions depend only on the spatial variable z and 
the time t. 
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Fig. 1 

As desired functions, we consider two components  of the mass velocity vector u and v along the z and 
x directions, respectively, and the normal az and shear rzz components of the stress tensor in the coordinate 
system (z, x). They satisfy the equations of motion 

Ou Oa~ Ov Orz~ 
P 0-"-[ = Oz ' POt  Oz (2) 

and the Hooke's law; after differentiation with respect to the t ime this law takes the form 

Oaz ~ Ou Ov Orz~ Ou Ov 
Ot = A-~z + B ~z '  Ot = B ~z  + C ~z" (3) 

Here 

1 (a - 2b + c) sin 22~o + p2 cos 22~o, A = a c o s 4 ~ o +  2bsin2r p2sin22~o, C = ~ 

1 (a cos 2 ~o - b cos 2~o - c sin 2 ~o) sin 2~o + #2 cos 2~o sin 2% (4) 

(1 - vl)E~ v2E1E2 El(E2 - v2E1) 
a =  b= c =  

E2(1 - vl) - 2 E l y , '  E2(1 - v,) - 2 E l y  2' (1 + vl)E2(1 - Vl) - 2E, v 2" 

Bearing in mind (4), one can readily verify that  the coefficient matrix at the  derivatives with respect 
to z on the r ight-hand side of (3) is positive definite. For each layer, we have a one-dimensional system of four 
equations (2) and (3) of the hyperbolic type [1] to determine four desired functions u, v, as, and r ~ :  

(5) 
(u) (001  (u) 

0 v 0 0 ~ l p  0 v 
"~ as = A B 0 -~z as " 

r ~  B C 0 0 r,x 

The propagation velocity of disturbances in the material  described is de termined by the slope of the 
characteristics of the system dz /d t  = =l=c+ and dz /d t  = •  which are calculated as eigenvalues of the 
coefficient matr ix  on the right-hand side of (5): 

c 2 + = A + C + r  c 2 = A + C - r  

2p ' 2p 

We note that  if A > C, we have c_ <~ v/-~/p < x /A /p  <~ c+. 
We consider the following problem for systems (2) and (3). At the initial moment  of time, all the 

desired functions are specified: 

u(O,z) = u~ v(O,z) = v~ c~(0, z) = a~ r~,(0, z) = r~ (6) 
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at the surfaces z = 0 and z = L, we confine ourselves to the boundary conditions of the form 

4- (r -F Xfaz) --- f~,  (r + X2 rzz) --- f2 :e, (7) 
z=O,L z=O,L 

where r ~, X~, and f/~ (i = 1, 2) are the specified time-dependent functions. The adjacent layers are perfectly 
conjugated, i.e., the stress and velocity vectors are continuous at their boundaries. 

N u m e r i c a l  Solu t ion  Based  on Vector  Decompos i t ion .  If the layers considered have different 
mechanical properties, the formulated problem can be solved only numerically. If the material is isotropic, 
i.e., E1 = E2, vl = v2, and/zl = #2, or the angle of inclination ~ of the z' axis to the z axis equals either zero 
or r /2 ,  we have B = 0, and the problem (5)-(7) is completely decomposed into two independent problems of 
the form 

cgW OP OP O W  
P ~ = Oz ' Ot = D Oz ' 

W(O, z )  = W ~  P(O,z )  = P~  (r + xiP)L=o,L = f+ ,  

(8) 

where by W and P we mean u and trz with D = A in the first problem and v and rzz with D = C in the 
second problem. 

Using a special discretization of the calculation domain which agrees with the disturbance velocity, 
one can obtain exact solutions of both problems. In the case B ~ 0, the method of solution of the complete 
problem is well known [1, 2] and consists of the diagonalization of the matrix in (5). 

We write system (5) in the form 

0 W  0P 0P 0 W  
P - ' ~  = c9"--~' Ot = D O-T' (9) 

where (A 
v ' P =  , D =  r ~  B C " 

We divide the calculation domain lying in the (z, t) plane into the elementary rectangles f~ = {zj 
z <~ zj+l ,  tk <<. t <<. tk+l} by straigl~t lines parallel to the z and t axes and introduce a local coordinate system 

7" = tk+l  -- tk. 

(~, 1/) in each of them: 

= ~ g - -  ~ ( 2 j q - Z j + l )  , ~ = 7 2 (tk +1[k+1) ' h = z j+  1 - z j ,  

As the approximate solution in fl, we use the polynomials linear in ~ and 

W = W o  + Wit/, 

which satisfy the system 

P : P o + P , ~ ,  W ' : W  6 + w ~ ,  P ' = P 6 + P ~  (10) 

0 W  0P I 0P 0W'  
P ~ = 0 z '  0-T = D O--7-" (11) 

To calculate W and P at the upper time layer the following formulas are derived from (10) and (11): 
7" T 

W j+ l /2  = W j + l / 2  -t- ~--~ (Pj+t  - Pj) ,  pj+I/2 = Pj+I/2 + )-~ D(Wj+t  - Wj) ,  (12) 

W J+l~ 2 = W I , 
t/=l 

ps+l /2  = p n=l' 

W j +  1 - W l  I , 

Pj+I -- P'[~=I' 

W3 = WILe____ 1 , 

PJ = P'  ~=-1" 

where 

W j + l / 2  = W[7=_ I, 

Pj+I/2 = P L = - I '  
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To find the quantities with integer indices, supplementary equations can be constructed based on the 
following energy identity, which is valid for all the polynomials in (10) satisfying (11): 

0 W  df~ 0W'  0 W '  P._____~' 
f f pWo -g~ + f f Po --g;; d~ + f / Q d~ = f f & d., 

where Q is the power of the artificial energy dissipation; with allowance for (10) and (11), this power can be 
written in the form 

( r OP'~ OP' 
Q= w~-wj+~/~  ~ Oz/ Oz 

We represent the matrix D in the form 

r D OW"~ 0W'  
+ P~) - P i + x / 2 -  ~ Oz ] Oz " (13) 

D = T D T  -~, D= (aelO ~0 ) , ael=pc2+, &~2=pc2__, 

where / )  is the diagonal matrix and T is the matrix composed of the normalized eigenvectors of the matrix 

_ , )  B 
- 0  ' 0 = - - .  �9 ~ -- zel 

0 ) T_ 1 0P '  
(r + ~2)/p Oz = O, 

0 ~ T_ 10W' 
(r + ~2)~ / 0--7- = 0. 

D which correspond to the eigenvalues de1 and ,~:  

1 0 ' 1 + 0  2 - 1  

We formulate the supplementary equations in the form 

1 ((~+~l)/p 
W~ - W~+1/2 - ~T 0 

\ 

�9 ( 1 (r Jr- "},l)ael P0 Pj+I/2 - ~ T 0 

Thereafter, the system of equations for determination of the integer quantities can be written in the form 

(w.,+w,)  (W.l_W,) 
Pj+I  + Pj - M P j+1 - P j  Pj+I/2 ' 

where M is a 4 x 4 matrix whose elements depend on the dissipation constants wl, w2, ~'1, and 72- As is shown in~ 
[4], the nonnegativity condition for the dissipation constants ensures the stability of the approximate solution 
and the convergence to the exact solution. Moreover, the formulas for calculation of W i  and P j  will be explicit 
provided the eigenvalues of M are equal to 1 or -1 .  

To calculate the quantities with integer indices, we use the explicit formulas 

e&=-&V+d-7~-aTr= #= ~ r= ;+1/2' 

- a ~ , , , -  ~ - = ) ,  - ~ , , ~ -  ,,+ ,;+,/~ 

( o , , )  ( o , ) 
- Od_u  + d _ v  + ~-_ cr~ - ~ r~z j+l  = - -  O d _ u  + d _ v  + -~_ cr~ - -'d7_ r~z j+l /2'  

( x o )  ( , o) 
j + l  j+1/2 

(d_ = pvff52 -_ and d+ = ~ ) ,  the continuity conditions for the quantities uj, vj, (a,)j, and (r,~)j at the 
common boundaries between two adjacent cells, and the boundary conditions (7). The scheme is stable if the 
following restriction imposed on the time step r holds true: 

c+r ~< h. (14) 

It should be noted that the scheme possesses a positive artificial dissipation proportional to the quantity 
(c+/c_ - 1) even in the case of equality in (14), and the discontinuity will be smeared at the wavefront 
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moving with velocity c_ in all cases where c_ < c+. 
Figure 2 shows the results of test calculations of the problem formulated for a single layer when El = E2, 

vl = v2, #1 = 0, and v2E2/(1 + v2)(1 - 2v2) = #2. In this case, we have A =/~2(1 + sin2 2~), C =/L2 cos 2 2~, 
and B =/~2 cos 2~osin 2~. The diagrams of the normal a:  and shear r,x stresses are plotted for ~ = 0.1, 0.4, 
and 1. The results obtained at the 200th time step are given in Fig. 2. The zero initial conditions are assumed 
and the normal impact excitation a ,  = 1 is applied at the surface z = 0. It is noteworthy that, in contrast to 
the case of an isotropic material, both graphs have two jumps even when a n o r m s  impact occurs. 

I t e r a t i v e  P r o c e d u r e  for S o l u t i o n  of  t h e  P r o b l e m .  The above algorithm consists of reducing 
the initial system of equations to a canonical form for each of the layers. In the case of a high-order 
matrix, this procedure encounters significant technics  difficulties. For example, rejection of the assumption 
of plane-parSlel motion would result in a system of six coupled equations. The problem becomes much more 
complicated in the two-dimensionS case. 

In [4], the authors proposed an iterative procedure to solve two-dimensionS dynamic problems of the 
theory of elasticity, which is based on the two-stage solution of one-dimensionS problems into which the two- 
dimensions problem is decomposed. The essence of the procedure is to take into account the "interfering" 
terms of the equations as "correcting" terms only at the second stage. We use this computational technique 
to solve system (5). 

The procedure of numerical solution of system (9) remains the same up to the formulation of 
supplementary equations. Dividing the calculation domain into the elementary rectangles fl and taking the 
linear polynomials (10) as an approximate solution in fl, we obtain formulas for calculation of the approximate 
solution at the upper time layer: 

T T 
uJ+l/2 = uj+i/2-t- - ~  [(a.)j+l - (~z)j], vJ+l/2 = Vj+l/2 W -~-~ [(r..)j+l - (V.z)j], 

T T 
a~ +1/2 = (a,)j+l/2 + [ A(uj+l - uj) + --s B(vj+l - vj), (15) 

T T 
TJ +x/2 = (~=)j+x/2 + ~ B(ui+~ - uj) + ~ C(,j+~ - .~). 

We expand the artificial-dissipation power Q (13) in the form 

O = \ u ~  uj+ll2 - ~ O z / ~  + \ ( z)o (a,)1+1/2 - -~ A Oz 2 B Oz]  Oz 

! I (, . ( , . o . ,  . 
+ v~ -- vj+112 ff'p -~Z ,] ~ "t- ( T z z ) O  - -  (Tzz)j+l/2 -- ~ C ~ -~ B OZ ,] OZ" 

The supplementary equations can be formulated in the form 

, , o 'z o o "  , ou '  Ou' 

~o - ~ i + ~ / 2  20 0--2 - 20 Oz ' (~z )~  - ( ~ . ) j + 1 / 2  - ~ A 0 z  = 2 -b-2z + \ 0 z  / ' 
(16) 
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l r at'z_ w Oz~z , r Ov I wC Ovl (Ou')* 
Vo-Vj+l/~ 2p Oz 2p Oz ' (r~)o-(r~x) j+l /2-~C a T -  2 -~z + g r B .  , (17) 

where a, 8, 7, and w are the dissipation constants. The solutions of the one-dimensional problems (16) and 
(17) are constructed in two stages. At the first stage, we set a and /3 to be zero, solve two independent 
problems of the form (8) (for an isotropic medium), and denote the resulting derivatives by (Ou'/Oz)* and 
(Ov'/Oz)*. At the second stage, we solve two independent problems of the form (8) by setting a and/3 equal 
to 1/2 (see [4]). Here the artificial-dissipation power has the form 

roe ov  .Ou,- .or  l 
Oz  -x;z g j  - N j  + Oz J 

The solutions of the one-dimensional problems (16) and (17) are calculated explicitly if 7 = h /~ / r~  - r and 

One can show that the approximate solution converges to an exact solution if the inequalities 7 />  0 
and w >/0, from which the restriction imposed on the time step follows, 

r <~ h/r (18) 

are satisfied. 
Thus, the algorithm of solution of the complete problem excludes the matrix diagonalization procedure 

and reduces to the solution of a necessary set of hyperbolic systems of two equations (systems of acoustic 
equations). 

It should be noted that, as in the above algorithm, the use of a t ime step which is the maximum 
admissible according to (18) in the scheme does not allow one to obtain an exact solution of the problem, since 
the one-dimensional problems (16) and (17), which describe the propagation of disturbances with different 
velocities, are solved independently but with the use of the same grid, which implies that Q does not vanish 
and is proportional to the factor ~fmax(A, C)/rain(A, C) - 1. 

The diagrams of the stresses a ,  and r , ,  and of the velocities, which coincide with those in Fig. 2, were 
obtained for the 200th time step on the basis of test calculations according to the scheme (15)-(17). 

As another example, we consider the problem of wave passage through a multilayered elastic obstacle. 
It is well known [5] that  lamination can significantly improve the screening properties of a structure. We 
consider a laminated material representing a stack of twenty plates of thickness z perpendicular to the H 
axis. These plates are cut from the same, transversely elastic material so that the crystallographic axis z' in 
each layer coincides with the z axis (~ = 0) or is perpendicular to it (T = ~r/2). The layers alternate, and the 
velocity of the longitudinal waves in each even layer is twice that in the odd layer. 

We assume that  a plane monochromatic longitudinal wave is incident on the stack at a right angle 
from the half-space z < 0. For z = 0, the boundary conditions in this case have the form 

(a', -- pc, u)L=O = sin(2zrkcgt/H), r,-,-I,=O = 0, 

where k is the number of waves along the layer of thickness H. At the right end, we formulate the nonreflecting 
conditions [4] 

I I --~ 
(c n and cs are the velocities of the longitudinal and transverse waves, respectively). 

If the calculations are sufficiently prolonged, a certain quasistationary regime is reached. In [5], the 
following problem is formulated: from a given set of materials, it is required to design a structure that ensures 
maximum damping of the wave energy flux propagated into the half-space z > L. We consider a simpler 
problem: to determine the number k (i.e., the frequency of the incident wave) for which the wave energy flux 
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characterized by the squared ratio between the amplitudes of the passing and incident waves is minimum. For 
the laminated Q'ructure considered, the numerical experiment gives k ~ 0.7. Figure 3a shows the diagram of 
crz for the 2000th time step (for this time the wave runs along the stack about 6.5 times). We now consider the 
same problem for a stack composed of the same number of layers for the case where the odd layers have zero 
inclination of the z' axis with respect to the z axis, while the even layers have an inclination equal to 7r/6. We 
use the following values of the layer parameters: viE1~(1 + vl)(1 - 2v~) = 2pl and/~2 = 2pa; then A = 4pa, 
C = 2pl, and B = 0 for odd layers and A = 19pa/4, C = 5p~/4, and B = -4r3p~/4 for even layers. We assume 
that a monochromatic wave of the same intensity as in the previous problem falls from the half-space z < 0 
at an angle 7r/4 to the stack. The diagram of the normal stress a ,  at the 1700th time step is shown in Fig. 3b. 
The calculations give k ~ 0.35. 

This work was supported by the Russian Foundation for Fundamental Research (Grant No. 97-01- 
00434). 
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